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Abstract Continued changes in climate are projected to

alter the geographic distributions of plant species, in part

by affecting where individuals can establish from seed. We

tested the hypothesis that warming promotes uphill redis-

tribution of subalpine tree populations by reducing cold

limitation at high elevation and enhancing drought stress at

low elevation. We seeded limber pine (Pinus flexilis) into

plots with combinations of infrared heating and water

addition treatments, at sites positioned in lower subalpine

forest, the treeline ecotone, and alpine tundra. In 2010,

first-year seedlings were assessed for physiological per-

formance and survival over the snow-free growing season.

Seedlings emerged in midsummer, about 5–8 weeks after

snowmelt. Low temperature was not observed to limit

seedling photosynthesis or respiration between emergence

and October, and thus experimental warming did not

appear to reduce cold limitation at high elevation. Instead,

gas exchange and water potential from all sites indicated a

prevailing effect of summer moisture stress on photosyn-

thesis and carbon balance. Infrared heaters raised soil

growing degree days (base 5 �C, p \ 0.001) and August–

September mean soil temperature (p \ 0.001). Despite

marked differences in vegetation cover and meteorological

conditions across sites, volumetric soil moisture content (h)

at 5–10 cm below 0.16 and 0.08 m3 m-3 consistently

corresponded with moderate and severe indications of

drought stress in midday stem water potential, stomatal

conductance, photosynthesis, and respiration. Seedling

survival was greater in watered plots than in heated plots

(p = 0.01), and negatively related to soil growing degree

days and duration of exposure to h\ 0.08 m3 m-3 in a

stepwise linear regression model (p \ 0.0001). We con-

cluded that seasonal moisture stress and high soil surface

temperature imposed a strong limitation to limber pine

seedling establishment across a broad elevation gradient,

including at treeline, and that these limitations are likely to

be enhanced by further climate warming.

Keywords Limber pine � Treeline � Experimental

warming � Moisture stress

Introduction

Mountain ecosystems occur within elevation-associated

climate gradients driven by lapse rate and orographic

effects (Lundquist and Cayan 2007; Wieser 2007a, b).

Differences in physiological sensitivity of plants to climate

are important in the sorting of species with elevation,

typically leading to ordered sequences of climax commu-

nity types arranged in elevation bands (Peet 1978). Climate
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models forecast warming of 2–6 �C (median 3.4 �C) across

western North America by 2100 (IPCC 2007). This is

anticipated to promote uphill redistribution of mountain

plant species (Parmesan and Yohe 2003), including dis-

placement of alpine tundra by forest (Moen et al. 2004;

Engler et al. 2011) and altered plant communities at low

elevation (Weaver 1980).

Local effects of climate on overriding physiological or

competitive limitations may produce asymmetric range shifts

at upper and lower (i.e., ‘‘leading’’ and ‘‘trailing’’) distribu-

tion edges (Breshears et al. 2008; Kelly and Goulden 2008;

Doak and Morris 2010). Carbon imbalances are often cited as

physiological mechanisms linking abiotic thresholds to tree

species range limits, and explaining observed or predicted

responses to climate change. For example, upper elevation

limits of subalpine trees occur where growing season shallow

soil temperature drops below an average of *6 �C (Körner

and Paulsen 2004). Cold-inhibition of new cell growth, rather

than carbon assimilation, has been proposed as the mecha-

nism responsible for alpine treelines (Hoch and Körner 2009;

Petit et al. 2010), and forming the rationale for predictions of

new tree growth in the alpine. However, the importance of

growth limitation by cold during the necessary process of

seedling establishment is not yet clear (Reinhardt et al. 2011).

At lower elevation, seasonal warm and dry conditions limit

seedling establishment by restricting photosynthetic carbon

acquisition (Cui and Smith 1991). This limitation is expected

to strengthen with warming and may also increase in rele-

vance at the high elevation boundaries of subalpine trees

(Johnson et al. 2004; Johnson and Smith 2007).

Field climate manipulations can help to determine how

warmer conditions will affect local physiological limita-

tions, but few have been undertaken in high mountain

environments due to the associated logistical challenges.

High-elevation warming studies have found positive

impacts on conifer growth, such as reduced photoinhibition

from sun exposure following cold nights (Germino and

Smith 1999) and increased stem elongation rates and xylem

hydraulic conductivity (Danby and Hik 2007; Petit et al.

2010). However, warming has also been shown to reduce

summer soil moisture availability (Harte et al. 1995) and to

increase susceptibility to spring frost (Taulavuori et al.

2004; Martin et al. 2010). More studies relating physio-

logical performance (e.g., photosynthesis, respiration, and

photoinhibition) and survival of establishing seedlings to

climate are needed to predict whether and how tree dis-

tributions will shift under future climate conditions.

We investigated the hypotheses that subalpine tree estab-

lishment is limited by low temperature at and above treeline

and by water stress at lower elevation. We used infrared

heaters to warm study plots within three sites spanning 470 m

elevation at Niwot Ridge in the Rocky Mountains to evaluate

the effects of warming on first-year seedling physiology and

survival. We also included a water addition treatment to

alleviate warming-induced moisture reductions and to

increase summer water availability above ambient levels. We

selected limber pine (Pinus flexilis) for its broad geographic

distribution, seed mobility by bird dispersal, local presence

from mid-elevation to treeline, and ability to colonize rela-

tively dry exposed sites (Letts et al. 2009). We evaluated

photosynthesis and respiration rates of field-germinated

seedlings over a wide range of conditions in an attempt to

identify threshold responses to temperature and soil moisture.

We then interpreted these results in terms of the first-year

establishment potential of limber pine within and above its

current elevation range with warming.

Materials and methods

Sites and experimental design

We conducted all work at Niwot Ridge in the Front Range of

the Rocky Mountains in Colorado, USA. We chose three sites

on the south-facing slope: near the ‘‘warm edge’’ of current

subalpine forest (lower subalpine, LSA, 3,060 m), within the

alpine-treeline ecotone (upper subalpine, USA, 3,430 m),

and above treeline (alpine, ALP, 3,540 m). Reinhardt et al.

(2011) described these sites, and others (e.g., Walker et al.

1994; Monson et al. 2002; Darrouzet-Nardi 2010) have pro-

vided detailed descriptions of the subalpine forest and alpine

regions. Tree species at LSA included subalpine fir (Abies

lasiocarpa), Engelmann spruce (Picea engelmannii), lodge-

pole pine (Pinus contorta), and limber pine (Pinus flexilis),

with a sparse understory of bilberry (Vaccinium myrtillus),

common juniper (Juniperus communis ssp. alpina), and

herbs. At the USA site, dense, flagged krummholz islands of

Engelmann spruce and subalpine fir occurred with a few

stunted individuals of limber pine, interspersed within broad

patches of alpine tundra vegetation. Alpine vegetation in the

USA open spaces and at ALP was similar, primarily com-

prising short herbaceous perennials and cushion plants

(Walker et al. 1994).

At each of the three study locations, we established 20,

3-m diameter, circular treatment areas and assigned them

to one of four heating and watering treatments (W,

watered; C, control; HW, heated ? watered; and H,

heated), stratifying by vegetation or canopy cover, aspect,

elevation, and distance from krummholz (USA). Study

plots were 1 m2, positioned within the treatment areas

(each area contained three additional plots not used in the

current study and a 30-cm buffer area). Heated treatment

areas were surrounded by six, 240-V, 1,000-W, IR heaters

(Mor Electric Heating, Comstock Park, MI, USA), on circular

perimeter scaffolding at 1.2 m height, following the geome-

try of Kimball et al. (2008). Heaters were run at a constant IR
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output continuously from October 2009, supplied by line

power extending to each site. Heaters were automatically

turned off whenever wind speed exceeded 10 m s-1 and

heater output was reduced at LSA in June when soil heating

effects exceeded 4.5 �C above ambient. To offset soil mois-

ture evaporation by the heaters and generate a broader range

of summer moisture availability, watering treatments were

initiated at each site when average soil moisture in heated

plots dropped below that of control plots. Each watered

treatment area then received 2.5 mm of water weekly through

September. Total water added to plots varied with snowmelt

and soil dry-down timing, up to a maximum addition of

30 mm, or about 3 % of mean annual and 20 % of mean July–

September precipitation across the transect (Greenland 1989;

NWCC 2012).

Limber pine cones were collected in September 2009

from 24 trees growing at 2,900–3,100 m elevation within

1.5 km of LSA. Cones were dried indoors until seed could

be extracted. Harvested seeds were pooled, and sowing was

conducted in fall of 2009 by placing five seeds in each of

70, 10 9 10 cm plot cells at 2.5 cm depth. Plots were

visited approximately weekly following snowmelt to

record numbers of germinating and dead seedlings. Frac-

tion of seedlings surviving was calculated at the end of the

growing season as the number of living seedlings divided

by the number observed to germinate (or emerge) on each

plot, excluding individuals harvested for destructive mea-

surements. Plots were protected from granivory and her-

bivory by hardware cloth exclosures.

Soil microclimate and meteorological measurements

Soil moisture and temperature probes (ECTM; Decagon,

Pullman, WA, USA) were permanently inserted into the

soil vertically in the center of each plot to measure

microclimate at 5–10 cm depth, with data recorded every

15 min. Soil probes were calibrated in the laboratory to

volumetric water contents ranging from dry to saturated

using soil collected adjacent to plots and sieved to remove

particles [2 mm. Meteorological towers erected in the

center of each of the three sites measured air temperature

and relative humidity (HMP45C; Vaisala, Helsinki, Fin-

land) and wind speed (03101-L; RM Young, Traverse City,

MI, USA) at 2 m height, with data logged every 15 min.

We determined presence of snow on plots as days with less

than 0.5 �C diel soil temperature variability, and confirmed

that these temperature-based snow cover determinations

were consistent with bi-weekly field snow surveys. We

then determined snowmelt date (representing the start of

the growing season) for each plot as the first snow-free day

when all subsequent snow cover events lasted less than

four continuous days. Growing degree days (GDD, �C day)

were calculated as an integrated measure of exposure to

warm temperature by summing all soil temperature mea-

surements above 5 �C for the entire snow-free period in

each study plot, and then multiplying by the measurement

interval (15 min).

Physiological measurements

Gas exchange and stem water potential measurements were

collected from seedlings in three campaigns (10–22 July,

24–31 August, and 29 September–7 October 2010; Fig. 1).

All gas exchange measurements were conducted between

0900 and 1600 hours local time (between a few hours after

sunrise and several hours before sunset) using a 2 9 3 cm

leaf chamber with an external LED light source, connected

to a photosynthesis system (LI-6400 XT; Li-Cor Biosci-

ences, Lincoln, NE, USA). Seedlings remained small in

stature throughout the first year [averaging 3.6 ± 0.5 (SD)

cm tall], and in most measurements all cotyledon and leaf

material was included inside the chamber during mea-

surements. The chamber was clamped onto each seedling

stem in a vertical orientation, positioned to have the light

source illuminate seedlings from the side closest to the

current natural sun angle. Cotyledons and needles spread in

three dimensions inside the chamber volume. Carbon

dioxide flowing into the chamber was set to 400 lmol

mol-1 and vapor pressure was kept at ambient levels for all

gas exchange measurements. Silhouette areas of sampled

material were calculated using image processing software

(Image J; Scion, Fredrick, MD, USA) from digital photos

taken immediately following gas exchange measurements.

Temperature (T) inside the chamber was coupled to

ambient air T by the flow of air through the chamber. Leaf

temperature inside the chamber during measurements was

calculated using energy balance equations in the instrument

software. Up to five individuals were sampled for photo-

synthesis (Anet) and dark respiration (R) from each plot

(depending on seedling availability), and at least four plots

were sampled per elevation and treatment combination in

each measurement campaign (LSA n = 177, USA

n = 147, ALP n = 119 individuals sampled across all

plots, treatments, and campaigns).

We measured light-saturated (1,200 lmol photons

m-2 s-1) Anet and then R from each seedling. We determined

from preliminary light response measurements that saturation

of Anet occurred at 400–800 lmol photons m-2 s-1. Dark

respiration rates were recorded after turning off the light

source and waiting for stabilization of flux rates, and were

regarded as an indication of growth and maintenance respi-

ration, rather than absolute respiration rates in the light during

the day (Atkin et al. 2000). Respiration was logged only after

remaining stable (no upward or downward trend) for 3–5 min

to avoid recording ‘‘post-illumination bursts’’ of light-

enhanced dark respiration (Atkin et al. 1998). This
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phenomenon was not detected, and 3–5 min of stability was

deemed acceptable after initially monitoring seedling respi-

ration for[10 min post-illumination.

Within each measurement campaign, a subset of individ-

uals (88 in total) was excavated immediately after gas

exchange measurement, sectioned, and then placed in a

pressure chamber (PMS-1000; PMS Instruments, Corvallis,

OR, USA) for determination of midday stem water potential.

To investigate potential impacts of photoinhibition on seed-

ling gas exchange, five individuals from each elevation and

treatment group were sampled for chlorophyll fluorescence

(MINI-PAM; Heinz Walz, Effeltrich, Germany) following at

least 2 h of dark acclimation (between 2300 and 0330 hours)

on the nights of 27–28 August. Photochemical efficiency of

Photosystem II (PSII) was calculated as the ratio of variable

fluorescence to maximum fluorescence (Fv/Fm) following

Maxwell and Johnson (2000).

Analysis approach and statistics

Two-way (site by treatment) analysis of variance

(ANOVA) tests were conducted on study plot data (n = 5

per site/treatment combination) to assess site and treatment

effects on seedling survival, snowmelt date, and soil

moisture and temperature. Data transformations were

conducted where necessary to meet model assumptions. All

statistically significant results (p \ 0.05) were evaluated

using Tukey honestly significant difference criteria for

pairwise comparisons, with Bonferroni corrections for

multiple comparisons. Stepwise linear regression was used

to determine which environmental variables, if any, were

significantly related to seedling survival. Linear and non-

linear regression analysis was used to relate seedling

physiological measurements to temperature and moisture

conditions at the time of measurement.

Results

Seedling physiology

Seedlings sampled for midday water potential (wmidday) and

gas exchange responded strongly and consistently to sea-

sonal reductions in soil moisture across sites and treatments

(Fig. 2). Summer reductions of volumetric water content at

5–10 cm depth were associated with low afternoon stem

water potential (Fig. 2a), which corresponded with sto-

matal closure (Fig. 2b) and limited CO2 assimilation
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Fig. 1 a–c Air temperature and d–f vapor pressure deficit (VPD) at

2 m from site meteorological towers, and g–i average volumetric soil

moisture (h) from untreated plots at 5–10 cm depth at the three

elevation sites for the period of days 135–287 (May 15–October 14).

LSA lower subalpine forest (3,080 m), USA upper subalpine (within

treeline ecotone, 3,400 m), ALP alpine (above treeline, 3,550 m).

Black lines are daily averages and gray lines are daily min and max

temperature. Vertical gray bands show times when gas exchange and

water potential data were collected. Horizontal gray and black lines
show soil moisture values of 0.16 and 0.08 m3 m-3
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(Fig. 2c). Based on these observed relationships, h of 0.16

and 0.08 m3 m-3 were selected as indicating moderate and

severe soil moisture stress (e.g., wmidday \ -1.5 MPa and

wmidday \ -4 MPa, respectively; Fig. 2a). Average values

of Anet showed an exponential decline with decreasing h,

but there was considerable variation between individual

measurements (Fig. 3a). Similarly, dark respiration

declined with decreasing h, but with large variation among

individuals (Fig. 3b).

To qualitatively assess responses of Anet and R to tem-

perature, we compared Anet and R of seedlings to leaf

T measured concurrently inside the gas exchange chamber,

sampled and pooled across dates and sites (Fig. 4). Leaf

T during chamber measurements was coupled to that of air

flowing through the chamber, differing by ?0.3 ± 0.4 �C

SD, rather than reflecting natural leaf T before insertion

into the chamber. However, air T to which seedlings had

adjusted during gas exchange measurements encompassed

a broad temperature range due to diurnal and seasonal

fluctuations. To evaluate effects of water stress on tem-

perature responses, samples were first separated into soil

moisture categories intended to reflect minimal (h[ 0.16

m3 m-3), moderate (0.16 [ h[ 0.08 m3 m-3), and severe

(h\ 0.08 m3 m-3) moisture stress. These categories were

largely decoupled from other time-dependent variables,

such as seedling age, because midsummer precipitation

raised h above 0.16 m3 m-3 for several weeks at all sites

(Fig. 1). Overall responses of Anet and R to leaf T were

obtained by averaging all data pooled within 5 �C tem-

perature categories. Seedlings under minimal drought

stress showed highest Anet with leaf temperatures of

15–20 �C, and Anet decreased as leaf temperatures deviated

from this range (Fig. 4a). With moderate or severe water

stress, Anet remained low or negative (net CO2 efflux under

illumination) across the full measured range of leaf

T (Fig. 4b, c). Dark respiration generally increased with

leaf temperature while h was above 0.16 m3 m-3 (Fig. 4d),

but this trend weakened at moderate soil moisture stress, as

many individuals respired at low rates despite high leaf

temperatures (Fig. 4e). Under severe soil moisture stress

(h\ 0.08 m3 m-3), R was relatively low with no apparent

influence of leaf temperature (Fig. 4f). Net assimilation in

heated and unheated plots was similarly constrained by

stomatal conductance (Fig. 5).

Fluorescence measurements revealed generally uniform

and high Fv/Fm. Only two individual seedlings showed

evidence of substantially reduced photochemical effi-

ciency: Fv/Fm = 0.41 (LSA, H ? W), and 0.56 (USA, H).

These inhibited seedlings also demonstrated net CO2 loss

under saturating light (not shown). Photochemical effi-

ciency (Fv/Fm) from all other seedlings (n = 58) ranged

from 0.72 to 0.83, with no relationship between Fv/Fm and

Anet (r2 = 0.008, p = 0.54).

Site and treatment effects on microclimate and survival

Throughout the snow-free growing season between average

snowmelt date and the first large storm of the following

winter (days 135–284), afternoon maximum air tempera-

ture was 5.1 ± 1.5 (SD) �C warmer and afternoon vapor

pressure deficit (VPD) was 0.5 ± 0.3 kPa higher at the

LSA site than the average of the two upper elevation sites,

where both measurements were consistently similar

(Fig. 1). However, minimum nightly air temperature and
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Fig. 2 a Afternoon stem water potential (Wmidday) versus volumetric

soil moisture (h), and b stomatal conductance (gs) and c net CO2

assimilation (Anet) versus afternoon stem water potential. White-filled
symbols are seedlings from unheated (C and W) plots and black
symbols are from heated (H and H ? W) plots; inverted triangle
LSA, diamond USA, and circle ALP. Vertical lines in (a) indicate h
of 0.16 and 0.08 m3 m-3. Lines were fit to transformed data from all

sites and treatments, and are a log(h 9 106) = 0.30(-W) - 1.83

(-W0.5) ? 13.74, r2 = 0.49; b (-W ? 3/8)0.5 = 0.03(gs 9 106)2

- 0.83(gs 9 106) ? 6.48, r2 = 0.35; and c log(-W) = 0.512 [log

(Anet ? 4.23)]2 - 2.76 [log(Anet ? 4.23)] ? 3.86, r2 = 0.46 (2 low-

est values of Anet were omitted during curve fitting for (c) due to

unequal leverage)
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VPD were similar (within 1.0 ± 0.9 �C and 0.04 ±

0.02 kPa) at all three sites throughout the summer. Volu-

metric water content (h) was generally lower at the forest

site, with an earlier and prolonged period of soil moisture

depletion relative to the higher sites (Fig. 1). Total pre-

cipitation for the water-year encompassing the 2010

growing season at Niwot Ridge was 85 % of the long-term

average (NWCC 2012). The average day of snow melt on

study plots varied with elevation and treatment (Table 1;

melt timing coincided with peak h in Fig. 1). Heating

caused intermittent snow cover during winter and earlier

snowmelt (Table 1), particularly in the LSA forest where

wind redistribution of snow was low. This importance of site

characteristics on winter heating effects was apparent as a

significant site 9 treatment interaction affecting snowmelt

date (Table 1). Seedling germination occurred primarily

within June and July (days 152–212). The growing season

abruptly ended at all sites on day 284 (October 11), with the

appearance of cold winter weather (Fig. 1).

There was substantial seasonal hysteresis in the rela-

tionship between soil T and h, particularly at LSA, due to

cooling in fall before the appearance of winter precipitation

(Fig. 6a–c). Seasonal minimum soil moisture occurred

weeks later than maximum soil temperature at LSA

(Fig. 6a), whereas minimum moisture and maximum tem-

perature occurred at approximately the same time at the

high elevation sites (Fig. 6b, c). Although summer air

temperature and VPD were higher at the low elevation site

(Fig. 1), daily average soil temperature during summer was

greater at the two upper elevation sites where soils received

direct sun with little shading canopy (Fig. 6a–c).

Histogram plots of 5–10 cm soil temperature provide a

relative and somewhat dampened indication of surface

temperature variability across sites and treatments (Fig. 6,

lower panels). Soil temperature distributions were narrower

(had greater kurtosis) at the forest site than at the upper

sites, due to larger diel variability in soil temperature in

treeline and alpine soil exposed to sun and night sky. The

central tendencies of season-long temperature distributions

were shifted 2–4 �C warmer by the heating treatments,

including periods when soil moisture was limiting (Fig. 6).

Watering did not have a strong effect on 5–10 cm soil

temperature distributions within sites (Fig. 6), and had no

significant effect on the number of days plots spent below

values of h chosen to indicate moisture stress (Table 1).

However, there was a significant treatment effect on sur-

vival of seedlings, with greater survival in W than in H

plots (Table 1). While heating and watering did not pro-

duce significant differences on h at 5–10 cm depth, sig-

nificant h differences were found between sites (Table 1).

At the alpine site, plots spent fewer days with h\ 0.16

m3 m-3, with almost no occurrence of h\ 0.08 m3 m-3 in

unheated plots. Survival was also greater in the alpine site

than the two lower elevation sites. Heating had a significant

effect on soil temperature, including growing degree days

and average August/September soil T (Table 1; Fig. 7).

August–September temperature was highest at USA,

leading to similar growing degree day totals at USA and

LSA (Table 1). Stepwise linear regression found that sur-

vival was significantly related to both growing degree days

(Fig. 7; Table 1) and the number of days plots had

h\ 0.08 m3 m-3 (Table 1).

Discussion

Physiological sensitivity to temperature and moisture

Contrary to our initial hypothesis, low temperature was not

observed to strongly inhibit seedling establishment at any

elevation during the snow-free period we evaluated. First-

year seedlings emerged 5–8 weeks after snowmelt, and
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Fig. 3 Net CO2 assimilation under saturating light (Anet, a) and dark

respiration (R, b) versus volumetric soil moisture (h). Symbols and

shapes are as in Fig. 2. Large white circles are averages of h
categories defined by abscissa tick marks, with horizontal and vertical
error bars of 1 SEM (smaller than symbols where not seen). Lines

were fit to category averages, and are a Anet = 0.032 9 e23.64 9 h,

r2 = 0.94, and b R = 13.16 9 h ? 0.22, r2 = 0.77
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thus largely avoided cold spring conditions. Our composite

Anet versus leaf T analysis (Fig. 4) suggested that optimal

leaf temperature for photosynthesis was 15–20 �C, when

soil moisture was not limiting. This optimum temperature

range was similar to values reported for seedlings of limber

pine from a variety of sites (Lepper 1980), as well as for

co-occurring Engelmann spruce (Hadley and Smith 1987).

A similar optimum temperature for photosynthesis across

our sites with widely-differing conditions (Fig. 1; Table 1)

would be consistent with observations indicating that

temperate conifer species show relatively low photosyn-

thetic acclimation potential (Atkin et al. 2006; Way and

Sage 2008a, b; Wieser et al. 2010). While minimum night

air and surface temperatures below 0–2 �C have been

shown to inhibit photosynthesis on the following day for

limber pine and co-occurring species (Smith et al. 1984;

Johnson et al. 2004), minimum air temperatures during the

2010 growing season (between snowmelt and winter pre-

cipitation) and specifically during measurement campaigns,

remained above 0 �C (Fig. 1).

A lack of cold night temperatures also contributes to

explaining the general absence of photoinhibition observed

in chlorophyll fluorescence across sites and treatments in

late August. Low incidence of photoinhibition of limber

pine at our treeline and alpine sites in summer was also

reported for 2009 by Reinhardt et al. (2011). This finding is

unique, as photoinhibition is known to impose a strong

limitation at other treelines (Ball et al. 1991; Maher and

Germino 2006; Bader et al. 2007), where warming of

nighttime surface T may improve seedling carbon gain

(Germino and Smith 1999). The two individual seedlings

that showed inhibited PSII efficiency also showed net

carbon loss under saturating light. However, these seed-

lings were not uniquely exposed to photoinhibitory con-

ditions (radiative cooling to cold night sky followed by

high sunlight; Ball et al. 1991), and were more likely in

advanced stages of drought stress. Future measurements of

chlorophyll fluorescence of overwintering seedlings soon

after snowmelt (when seedlings experience coldest night

temperature) will be necessary to determine the potential

importance of photoinhibition at our sites.

A tendency for lower rates of respiration at high temper-

ature in heated plots relative to unheated plots was apparent

(Fig. 4d), and may indicate respiratory, but not photosyn-

thetic, acclimation to warmer growing temperatures to
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improve carbon balance, as observed elsewhere (Ow et al.

2008; Way and Sage 2008a, b; Nedlo et al. 2009). T-response

curves from individuals would be needed confirm any

acclimation of basal respiration rates or Q10 (Atkin and

Tjoelker 2003). However, respiration is not diffusion-limited

by stomatal restriction in the same way as photosynthesis

(Fig. 5), as described by Flexas et al. (2006), a disparity that

could lead to carbon limitation under prolonged moisture

stress (McDowell et al. 2008; Adams et al. 2009). Way and

Sage (2008a, b) showed that respiratory acclimation of black

spruce seedlings did not fully compensate for carbon losses

under elevated greenhouse temperature. Spruce seedlings

altered a number of morphological traits to make up the

balance, including reduced root expansion, which led to

enhanced susceptibility to desiccation and greater mortality

(Way and Sage 2008a, b). Our field-grown limber pine

seedlings showed very low dark respiration rates after soils

had dried below 0.08 m3 m-3, with little variability in R over

a range of leaf T (Fig. 4f). This may indicate a late summer

depletion of respiratory substrates (Tjoelker et al. 2009), but

further investigation would be needed to determine the extent

and importance of this effect.

Seedling photosynthesis remained low under autumn

moisture limitation until the growing season ended with the

initiation of snow cover. While established trees of the

same species have been shown to respond to late season

Table 1 Results of 2-way analysis of variance (ANOVA) of seedling

survival (# surviving to end of first year/# germinated), day of snow

melt, numbers of days with soil volumetric moisture h below 0.16 and

0.08 m3 m-3, average soil temperature at 5–10 cm depth for the

months of August and September, and growing season degree days

ANOVA results Stepwise regression

F p b ± SE p

Survival – –

Site 5.63 0.006 LSAa USAa ALPb

Treatment 4.21 0.010 Wb Cab HWab Ha

Site 9 Trt 0.54 0.778

Snowmelt date 0.0003 ± 0.0013 0.818

Site 86.32 \0.001 LSAa USAb ALPb

Treatment 53.84 \0.001 Wb Cb HWa Ha

Site 9 Trt 12.17 \0.001

Days h\ 0.16 -0.0001 ± 0.0018 0.941

Site 5.93 0.005 LSAb USAa ALPa

Treatment 2.59 0.064 Wa Ca HWa Ha

Site 9 Trt 2.15 0.065

Days h\ 0.08 20.0034 – 0.0013 0.012

Site 5.18 0.009 LSAb USAb ALPa

Treatment 2.18 0.103 Wa Ca HWa Ha

Site 9 Trt 0.93 0.479

Min h 0.4996 ± 1.3653 0.716

Site 9.28 \0.001 LSAa USAa ALPb

Treatment 0.85 0.474 Wa Ca HWa Ha

Site 9 Trt 1.18 0.333

T August–September -0.0036 ± 0.0359 0.921

Site 7.192 \0.001 LSAa USAb ALPa

Treatment 30.021 \0.001 Wa Ca HWb Hb

Site 9 Trt 1.710 0.140

Degree days 20.0003 – 0.0001 0.007

Site 22.63 \0.001 LSAb USAb ALPa

Treatment 65.43 \0.001 Wa Ca HWb Hb

Site 9 Trt 2.11 0.069

Superscripted letters denote significant differences, and alphabetic order corresponds with increasing magnitude (i.e. a \ b). Final model results

of stepwise linear regression of environmental variables and survival appear on the right, including coefficients (b), their standard errors (SE) and

p values of testing whether b = 0 (p)

Results in bold were included in the final model: p \ 0.0001, F = 15.555, RMSE = 0.176
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moisture availability (Letts et al. 2009), our first-year

seedlings (including those in watered plots) remained

drought stressed until the abrupt onset of winter, with no

apparent favorable autumn conditions. Most of the seasonal

decline in photosynthesis with soil drying in the current

study corresponded with low stomatal conductance (Fig. 5a).

However, the relative importance of non-stomatal photo-

synthetic limitations under climate change conditions

(Sage and Kubien 2007; Sage et al. 2008), and the potential

for first-year seedling carbon uptake following drought-

reducing autumn precipitation should be evaluated in

further detail.

Soil moisture became limiting to photosynthesis to some

degree at all sites and within all treatments over the sum-

mer of 2010. Mature limber pine has demonstrated sensi-

tive stomatal responses to soil moisture depletion and high

VPD relative to other subalpine trees (Pataki et al. 2000;

Letts et al. 2009), but has also been observed to maintain

afternoon water potentials near -1.8 MPa despite variable

soil and predawn w (Fischer et al. 2002). We measured

wmidday below -6 MPa from herbaceous stems of shallow-

rooted first-year seedlings (Fig. 2), reflecting heightened

vulnerability to desiccation during seedlings’ first year.

During our water potential measurements, many seedling

stems broke apart under increasing pressure before liquid

was seen or failed to exude water from cut stems under
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maximum chamber pressure (7 MPa). Many stems con-

tained visible lesions in conducting tissues and several may

have been embolized or heat girdled (Kolb and Robberecht

1996). These qualitative observations add to the conclusion

based on our water potential and gas exchange results

(Figs. 2, 3, 4, 5) that increasing temperature may exacer-

bate physiological challenges to seedling carbon and water

balance imposed by seasonal moisture stress at high

elevation.

Climate, elevation, and future species distributions

Seedling establishment is a requirement for uphill redis-

tribution of mountain species, and depends largely on

sensitivity to microclimate during the first year after

emergence (Germino et al. 2002). We found that first-year

seedling survival of the drought-tolerant species limber

pine was likely in only the coolest plots with the highest

water availability, conditions that were most prevalent in

unheated plots above treeline. Although water content

values of 0.16 and 0.08 m3 m-3 were selected as threshold

indicators of moderate and severe stress, seedling gas

exchange (Figs. 2, 3) and mortality (Fig. 7) responded

continuously to seasonal drought stress across all study

plots. Notably, the most extreme drought conditions

(coincidence of low h and high soil T) occurred within the

treeline site (USA, Fig. 6), where August–September soil

temperature was highest (Table 1). Seasonal drought stress

in krummholz interspaces may be heightened due to

absence of canopy shade relative to the forest and reduction

of wind speed relative to the open alpine tundra (Hadley

and Smith 1987; Van Miegroet et al. 2000).

Our results indicated a critical importance of soil

moisture to seedling physiology and survival, and our

water addition treatment was insufficient to compensate for

strong seasonal reductions of soil moisture affecting

seedling physiology (watering treatments not separated in

Figs. 2, 3, 4, 5 due to similarity). There were no significant

treatment effects on indicators of moisture stress calculated

from h (Table 1). This may have been due in part to

minimal infiltration to the 5–10 cm sensor depth and/or soil

surface evaporation, because our water additions frequently

occurred on sunny days. However, a significant treatment

effect was found for seedling survival between watered

(W) and heated (H) plots (Table 1), the treatments pre-

sumably associated with the lowest and highest drought

stress, respectively. This result indicates some improve-

ment of seedling survival by watering.

Soil moisture at many alpine forest limits is generally

assumed to be continuously adequate for tree growth, often

remaining above 0.2 m3 m-3 throughout the year (Körner

and Paulsen 2004; Mayr 2007; Wieser 2007a, b), but sea-

sonal moisture stress may be important at high elevation in

regions where drier soil conditions occur. Although annual

average temperature decreases with increasing elevation,

differences in surface radiation balance and snow depth can

lead to greater overall climate warming at high elevation

(Giorgi et al. 1997), higher summertime extremes of surface

temperature (current study; Hadley and Smith 1987; Bansal

and Germino 2010), and possibly summer water limitation.

A potential for aridity in treeline and alpine environments

has been proposed due to biophysical effects of elevation

(Smith and Geller 1979; Leuschner 2000), inferred from

growth patterns in treeline tree cores (Lloyd and Fastie

2002; Wilmking et al. 2004), and directly observed in

physiological measurements collected during unusually dry

years (Johnson et al. 2004; Brodersen et al. 2006; Johnson

and Smith 2007). We found evidence of an overriding

effect of drought stress on seedling CO2 exchange at high

elevation under ambient conditions in a relatively typical

year (Figs. 2, 3, 4, 5). Exposure to warm temperature and

dry soils across plots was negatively correlated to survival,

which was as low as 0 %, indicating the potential impor-

tance of first-year survival as an initial filter to seedling

establishment and species distribution changes. Our results

suggest seasonal moisture limitations to subalpine tree

seedlings may be enhanced by climate warming (Table 1;

Fig. 7). However, recruitment potential of subalpine trees

at high elevation will depend on the frequency of favor-

able years within longer-term climate variability, and our

results were limited to a single species and one growing

season. Continued survival of seedlings (including over-

wintering) and first-year establishment rates during years

with greater snow and/or summer precipitation remain to be

determined.
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